Prepare summarizedExperiment object from diann report.pg_matrix file
Source:R/prepare_se.R
prepare_se.Rd
Prepare summarizedExperiment object from diann report.pg_matrix file
Usage
prepare_se(
pg_matrix,
expDesign,
pr_matrix = NULL,
missing_thr = 0,
min_peptides = 0,
impute = "knn",
mixed_cutoff = "empirically",
remove_contaminants = TRUE
)
Arguments
- pg_matrix
the report.pg_matrix file from DIANN
- expDesign
A data frame with the experimental design. Should contain at least 'label', 'condition', and 'replicate' columns.
- pr_matrix
Optional argument. If the report.pr_matrix file from DIANN is provided, peptide information will be added to output.
- missing_thr
Integer specifying which proteinGroups are filtered out based on missing values.
- min_peptides
An integer specifing the cutoff for razor/unique peptides. The default is 0.
- impute
Specifies which imputatation method to use (default: knn). No imputation is done when entering 'none'. See details for options.
- mixed_cutoff
Either 'empirally' or a value between 0-1. For details, see mixed_imputation
- remove_contaminants
A logical value specifying if potential contaminants should be removed from the pg_matrix.
Details
For standard imputation options, see ?DEP::impute. For mixed imputation, see mixed_imputation
Examples
se <- prepare_se(report.pg_matrix,
expDesign, missing_thr = 1,
impute = 'knn') # creates se with missing values imputed
#> Imputing along margin 1 (features/rows).
#> Warning: 178 rows with more than 50 % entries missing;
#> mean imputation used for these rows
#> Cluster size 5636 broken into 3415 2221
#> Cluster size 3415 broken into 1448 1967
#> Done cluster 1448
#> Cluster size 1967 broken into 1000 967
#> Done cluster 1000
#> Done cluster 967
#> Done cluster 1967
#> Done cluster 3415
#> Cluster size 2221 broken into 1421 800
#> Done cluster 1421
#> Done cluster 800
#> Done cluster 2221
# creates se without imputing missing values.
se <- prepare_se(report.pg_matrix,
expDesign,
missing_thr = 1,
impute = 'none')